
7 D-A 186 00 PARALLEL LOGIC PROGRAMMING
AND ZMOB AND PARALLEL

/
SYSTEMS SOFTWARE AND NAR (U) MARYLAND UNIV COLLEGE
PARK DEPT OF COMPUTER SCIENCE J MINKER ET AL DEC 86

UNCLASSIFIED AFOSR-TR-87i27i SAFOSR-82-833 F/G 2/5 NE7~hEEi
IEEE.,s

-. Lu u36

S1.25 111 .4 (11 .

miCROCCnPY RESOLUTION TEST CHART

NATIONAL BUREAU OF S ANARS.L92A-

11N LAqSTVTEFD aF

EPORT DOCUMENTATION PA.
AD-A 186 300b RESTRICTIVE MARKINGS

3 DISTRIBUTION /AyAIkABILITY 06 REPOR.,._'. ;r pumlic release,
2b DECLASSIFICATION / DOWNGRADING SCHEDULE . .1 unlimited
4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORIf ZAj*IREPORT NUMBER(S)

ONT-R~l . 4K. 7 - 1 2 '7'

6a NAME OF PERFORMING ORGANIZATION 16b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

Dept. of Computer Science AFOSRINM
6C. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

University of Maryland I. " : !X B DC 2033Z-6"S

8a. NAME OF FUNDING/SPONSORING 18b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

AFOSR I NM AFOSR-82-0303
Bc.°ADDRESS (City, State, and ZIP Code) • 10. SOURCE OF FUNDING NUMBERS

_- "./..(ELEMENT NO. NO. N.ACCESSION NO

..1B DC 20332-6448 61102F 2304 A7

11 TITLE (Include Security Classification)

Parallel Logic Programming & ZMOB & Parallel Svs. Software & Hardware
12 PERSONAL AUTHOR(S)
Professor Jack Minker & Assoc. Professor'Mark We

13a. TYPE OF REPORT I3b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) S. PAGE COUNT
Final FROW/L/p ? T011111 Dpmher 1986

16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

Under the current grant parallel hardware and systems software implemented on ZMOB in
the previous year underwent extensive testing. A parallel problem solving system, PRISM
(Parallel Inference System) implemented on the VAX/Il-780 in the previous year was implemente
on the PYRAMID and SUN machines. D T IC

ELECTE

OCT 1 3 1987

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
0-UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0 DTIC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Dr. Rankin (202)767-5028 NM

DO FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF -HIS PAGE
All other editions are obsolete. UNULAbb FL ED

- -- . r

AFOSf-Tlt- 8 7- 1 27 1

Year-End Report

for

Parallel Logic Programming and ZMOB

and

Parallel Systems Software and Hardware

Sponsored by the

Air Force Office of Scientific Research

contract # AFOSR 82-0303

Accession For
NTIS GRA&I
DTIC TAB

December, 1986 Unannounced 0
Justifioatio

By,

Distribution/
Availability Codes

by Avail and/or

Dist Special

Professor Jack Minker -/

and t) T I C

Assoc. Professor Mark Weiser UicTD

Department of Computer Science

University of Maryland

C. .7

I

Abstract
Under the current grant parallel hardware and systems software implemented on ZMOB in the pre-

vious year underwent extensive testing. A parallel problem solving system, PRISM (Parallel Inference Sys-
tem) implemented on the VAX/11-780 in the previous year was implemented on the PYRAMID and SUN
machines.

The initial version of PRISM uses a simulation of the ZMOB hardware, and has been fully tested
and debugged. Experimental testing of PRISM on tht bimulated' system was undertaken in the current
year. In addition, several enhancements were made to PRISM to permit experimental analyses to be
made, and to incorporate additional features to take full advantage of parallelism in a problem solving
environment. The tracing and statistical gathering packages were extended. An AND-parallelism capa-
bility was added to achieve a second version of the PRISM system, and other features were added to the
system to more fully exploit parallelism. A constraint solving machine was integrated with PRISM.

In addition to the above, a general method to permit informative answers to be presented to a user
has been developed. Theoretical results were obtained for circumscription and a method for computing in
"protected" circumscription, using Horn clauses was developed.

In the area of systems hardware and software, the ZMOB processor is now fully functional and in
everyday use with 128 processors. Work is continuing on an experimental upgrade of some of ZMOB's
processors to 68000s. Basic system oftware for multiprocessing on ZMOB is becoming more robust and
performance studies now pinpoint are for improvement. Studies of parallel software debugging continue
to prove the value of multiple program views, and in particular the dicing approach was verified in a con-
trolled experiment. We have also constructed an interactive visual slicer. Studies of the automatic paral-
lelization of programs continues. We can now slice/splice arbitrarily structured programs and have tech-
niques that significantly reduce information o6erhead between the slices and splicer.

4'

1. Introduction

Under the current grant, a detailed design and implementation of a parallel problem solving system,

PRISM (parallel inference system), based on logic previously achieved on the VAX/1I-780 was

transferred to the PYRAMID and SUN machines. PRISM was implemented using a simulated ZMOB belt.

PRISM underwent experimental testing and was enhanced in a number of ways. The 128 processor

ZMOB was made operational, as well as several forms of program slicers and splicers for automatic paral-

lelization. Slicing received further experimental tests as a debugging tool, and new form of debugging

based on "dicing" was invented. During the summer of 1986, PRISM was transferred to McMOB, the

successor parallel machine to ZMOB.

In this report we provid- t description of the accomplishments under the current grant. In the area

of parallel problem solving, the initial PRISM has been fully implemented; individual programs have been

implemented and tested in a parallel environment; and investigations have been made into extensions to

the initial design. Experimentation has begun on evaluating PRISM in the simulated environment. We

have developed extensions to circumscription and to computing in the case of protected circumscription.

An approach has been developed to providing informative answers to users of deductive databases and

problem solving systems. In the area of parallel systems hardware and software, the ZMOB is fully func-

tional with 128 processors and in daily use; the McMOB 16 processor successor to ZMOB is opeartional

and in daily use; systems software is reliable; and several advances have been made in the areas of

automatically parallelizing programs and understanding their debugging. As a consequence of the work,

two book chapters on Zmob have been solicited, three journal articles have appeared, eleven papers were

accepted for publication in refereed conference proceedings, three PhD theses were written, three MS scho-

larly papers, and six technical reports. One article has been submitted to a journal, a second journal arti-

cle is in progress, several papers will be appearing in refereed conferences, and other papers are in pro-

gress.

We believe that there is currently no comparable effort that exploits parallelism in logic programs.

Although the current research is oriented towards moderate size problems, the, attachment of disks and

backend relational database machines will permit large problem solving and relational databases to be

=M 1111

2

executed in the ZMOB environment.

The research in parallel problem solving is under the direction of Professor Jack Minker who is

directing the current parallel problem solving efforts on ZMOB. Dr. Don Perlis whose research has been in

non-monotonic logics and artificial intelligence has been working with Dr. Minker on some of the theoreti-

cal issues associated with non-monotonic logic and parallel logic programs. The parallel hardware and

software effort is under the direction of Associate Professor Mark Weiser.

oEw

8

2. Accomplishments on Effort During Period December, 1985-December, 1986

This section is subdivided into two major parts. The first section, 2.1, describes the accomplished

research with respect to PRISM - the parallel problem solving system. The second section, 2.2, describes

the efforts for the development of systems software and hardware to make the ZMOB system available as

a resource for experimentation with parallel algorithms.

2.1. PRISM and Parallel Problem Solving on ZMOB

There were eleven major tasks in parallel problem solving undertaken under the current grant.

These are:

(a) Enhancements to PRISM:

(1) Integrate the Constraint Solving Machine with PRISM

'2) Implement Independent and Dependent AND-Parallelism

(3) Implement new tracing and debugging facilities for PRISM

(4) Interface PRISM with a relational database system

(5) Implement the Intelligent Channel

(b) Evaluation Studies

(1) Empirical Studies on PRISM

(c) Theoretical Studies:

(1) Control Structure Investigations

(2) Investigation of Typed Logics

(3) Non-Monotonic Logic Investigations

(4) Intelligent and Cooperative Answers

(5) Investigation of Parallel Computation

4

During the current grant substantial work was accomplished for all but two of the listed tasks. The

PRISM system was enhanced by the addition of AND-parallelism, the integration of the Constraint Solv-

ing Machine, and the addition of new tracing facilities. Work was accomplished in the area of theoretical

studies. Papers were published in the areas of Non-Monotonic Logic, Intelligent and Cooperative Answers

and Parallel Computation.

2.1.1. Enhancementa to PRISM

The initial PRISM system was enhanced by the addition of many features. The features and their

contributions to the system will now be outlined.

2.1.1.1. Integration of Constraint Solving Machine (CSM)

During the current grant year the CSM was integrated with the PRISM system. This effort involved

modifying the Problem Solving Machine (PSM) so that it sends goals to be tested for consistency to the

CSM. The system was tested on numerous databases including a genealogy database and a database that

represents a typed logic using a representation that has a semantic network flavor. Statistics on the per-

formance of the system were gathered. Results show that the CSM can successfully be used to reduce the

search space in problem solving in much the same way that the use of a typed logic can. Future work in

this area involves the implementation of a full theory of constraints as in [Kholi Portugal].

2.1.1.2. Implementation of AND-Parallelism

We have implemented and tested a version of PRISM that can exploit both full AND-parallelism

and independent AND-parallelism. The PRISM system is now such that it can run with either OR-

parallelism alone, OR-parallelism with independent AND-parallelism only, and OR-parallelism with both

dependent and independent AND-parallelism. In addition to these modes the user can control the use of

these types of parallelism through the use of annotations on the given logic program. Through the use of

these features the user has flexible control over how the system executes goals in parallel.

We note that the features outlined above help make PRISM one of the most advanced existing

parallel logic programming systems. No other system currently has the ability to exploit these forms of

parallelism in such a flexible manner.

8

2.1.1.3. Implementation of Tracing and Debugging Facilities

Two types of tracing facilities were added to PRISM under the current grant. The first allows the

user to see how PRISM constructs derivations. This system defines a window for each Problem Solving

Machine (PSM). The window contains the current proof tree that is active in the PSM and displays infor-

mation about the messages that it receives from other machines. Currently in order to use this system

the trace information is collected online and the trace is run afterwards. However, now that equipment for

graphics is more readily available it will be relatively easy to make this trace run online.

The second type of trace allows the user to examine offline the structure of a proof tree collected by

PRISM. The user is allowed through the use of keyboard commands to walk up and down the proof tree.

At each node the user can ask for information about the node's status. The information includes such

things as the literal selected in the node, the unifier and resolvent of the node and whether or not the

node was sent to another Problem Solving Machine.

Each of the above facilities greatly enhance the user's ability to understand and debug PRISM pro-

grams. The first system allows the user to understand how PRISM passes messages and exploits parallel-

ism. The second allows the user to find and isolate bugs in the logic of the program.

2.1.1.4. Other Enhancements

Due to lack of time we did not work on interfacing PRISM with a relational database system or

implementing the Intelligent Channel concept. We still believe that it would be very useful to integrate

both of these features into PRISM.

2.1.2. Evaluation Studies

During the current grant year the individual PRISM modules were instrumented so that they could

collect runtime statistics. A series of experiments were run trying to determine information about how the

allocation of PRISM machines effect the running of the system. There were two basic experiments:

(1) The first involved determining whether a speed up in reasoning occurs when additional machines

are used in problem solving.

6

(2) The second experiment involved trying to characterize how PRISM machines should be allocated

between Problem Solving Machines and Database Machines when only a fixed number of machines

are available.

These experiments were run on the following databases in both OR-parallel mode and, Independent

AND-parallel and OR-parallel mode.

(1) A genealogy database

(2) The four queens problem

(3) A quad tree program

(4) A natural language parser

(5) A program for determining that the fringes of a tree are equivalent.

The results obtained were as follows:

(1) When the encoding of the problem was designed for running in an OR-parallel or AND-parallel

mode then a linear speed up in runtime occurs when additional machines are used in problem solv-

ing until some asymptote is reached.

(2) For all databases when given a fixed number of machines they should be divided approximately

equally between Problem Solving Machines and Database Machines.

The first result is valuable in that it suggests that we can exploit parallelism only if we can learn

how to encode problems in a manner that exploits parallelism. The fact that the system works best when

there is one database machine for every problem solving machine seems to suggest that there is no need to

split the machines up. However, a deeper analysis of the results show that performance would decay if

the PSMs did not have the ability to send queries to different database machines. These preliminary

results must be verified with experiments on McMOB.

2.1.3. Theoretical Studies

7

2.1.3.1. Control Structure Investigations

An initial version of a control structure compiler has been written and tested. The compiler takes a

specification of the control component of a logic programming language and creates an efficient interpreter

for the language. The compilation technique is important in that it allows the user to explore issues in the

control of logic programs without having to resort to the use of a meta-interpreter. There are two primary

advantages to this approach. First, one does not pay the cost in terms of speed that one must pay when

using the meta-interpreter approach. Second, when writing a meta-interpreter one has to fight with

PROLOG's depth first with backtracking strategy. Since the compiler system is not constrained in such a

manner, it is easier for the user to conceive and express a control strategy.

Currently interpreters for the following control strategies have been generated:

(1) Depth First, Left to Right Literal Selection

(2) Breadth First, Left to Right Literal Selection

(3) Depth First, Selects Most Instantiated Literal

(4) Breadth First, Selects Most Instantiated Literal

Initial timing results show that the interpreter that mimics PROLOG (1) does so with a factor of

two loss of speed.

2.1.3.2. Investigation of Typed Logics

Implementation strategies for typed logics were discussed during the year. As stated in the section

on the Constraint Solving Machine it was determined that the CSM can be used to express most of the

desired type information. Other strategies considered involved making modifications to the unification

algorithm.

2.1.3.3. Non-Monotonic Logic Investigations

In the previous year we investigated McCarthy's notion of formula circumscription (McCarthy

[1984]) and found a partial completeness result for formula circumscription. We also investigated compu-

tational issues associated with protected circumscription and deveJoped an algorithm that extends the cc-i-

cept of relational databasts and permits complete and sound answers to be found in the case where the

theory consists of ground atomic formulae extended to contain protected data. We then investigated the

general case of Horn deductive databases augmented with protected data and found that the obvious

extension of our algorithm to this case was not adequate. Two journal articles were written in this year

based on these results.

2.1.3.4. Cooperative Answers for Database Queries

In this research we show how to utilize the semantics already present in a database in the form of

integrity constraints to give cooperative answers to database queries. A natural language interface to a

database has been designed. The interface is composed of the following modules:

(a) A natural language parser which transforms natural language queries into a logic formula.

(b) An optimizer which receives a logic formula applies integrity constraints to optimize the query and

collects all possibly useful integrity constraints concerning the query.

(c) A query evaluation procedure which outputs a useful answer in natural language.

Most of the current work has focused on the third module. The work achieved by this module can

be divided into two components, "What to Say" and "How to Say it". The "What to Say" problem is

guided by the heuristic use of the integrity constraints found in the second module. The "How to Say it"

problem is addressed by using the inverse of the first module. As a result of this research two papers were

presented at conferences.

2.1.3.5. Investigations in Parallelism in Graph Theory

A powerful framework for developing efficient solutions to graph theoretic problems has been dev-

ised and used to solve many problems. The framework is based upon the idea that graph separator

theorems can be used in formulating efficient divide- and-conquer solution strategies. A separator theorem

provides an efficient method of partitioning graphs into two components by removing only a few edges.

Many classes of graphs including planar graphs, series-parallel graphs and outerplanar graphs are known

to posses good separator theorems. Problems solved using this method include, efficient embeddings of

graphs into binary trees and area efficient VLSI layouts for graphs of arbitrary degree. A paper describing

Ng

these results has been submitted to the Journal of the ACM.

Incremental parallel algorithms for a class of graph problems based on spanning trees have been

developed. The machine model for these algorithms is the parallel random access machine (PRAM). These

algorithms exhibit a speed up of log(n) over the corresponding algorithms that solve these problems from

scratch. These algorithms are versatile in that they can be run efficiently on all three models of PRAMs

(viz. Concurrent Read and Write, Concurrent Read and Exclusive Write, Exclusive Read and Write). The

problems solved include connected components, bridges and bridge connected components, cycle basis and

minimum spanning trees. Early results of this work appear in the proceedings of the Fifth Conference on

Foundations of Software Technology and Theoretical Computer Science. A comprehensive account of

these results can be found in Maryland technical report TR-1590.

2.2. Parallel Hardware and Software

The parallel hardware and software research under this grant has the following goals:

"(a) Construction and evaluation of the Zmob architecture.
(b) Construction and evaluation of a variety of systems software for Zmob.
(c) Investigation of languages and operating systems for parallel computation.
(d) Investigation of general strategies for parallel computation.

Work has been proceeding in all four areas, although (a) and (b) have necessarily dominated the early

phases of research. There has been good progress, and research has now turned more to (c) and (d) and

investigating more general concerns of parallelism as guided by the Zmob experience.

2.2.1. Construction and evaluation of Zmob

At the time of our last report the ZMOB was running with only 64 processors. It is now running

with a full 128 processors, is in daily use for a variety of research projects (primarily systems and numeri-

cal analysis).

The 128 processor ZMOB continues to operate with a clock rate of 6.5Mhz, reduced from the design

speed of 10Mhz. A 16 processor ZMOB has been made to run at the 10Mhz rate, and the lessons learned

from this will be incorporated into the larger processor this year. The slower clock forces software to use

the slower programmed I/O on the Z-80A rather than the much faster DMA on the ZMOB processor

@C411

10

boards. Thus the faster clock will speed up parallel communication by even better than the apparent 1.5

factor.

We constructed a 16 processor 68010 Zmob, called McMOB, in wire-wrap form, and this became

available for dedicated research work during the late Summer of 1986. McMOB's uses the MOB commun-

ications boards and message-passing strategy, but, instead of Z-80 processors with 64kbytes of memory,

the McMOB processors are 68010's with IMbyte of memory.

Among the special hardware purchased to support ZMOB research this year were several disk drives.

The disk drives are being integrated into the MacMOB 68010 processors, which will also have direct ether-

net connections soon.

2.2.2. Construction and evaluation of systems software

Any new architecture needs considerable attention to its underlying support software before it can

be used. This support software includes debuggers, cross-compilers, assemblers, 'tweakers', linkers,

loaders, simulators, etc. This software exists for ZMOB in abundance, and is in a fairly stable state. In

fact, the majority of it achieved a milestone this year by moving from research status and hence the

responsibility of this grant to 'supported' status and hence a standard part of the Maryland CS Depart-

ment Laboratory software, supported by the systems staff. Previous proposals and reports have dwelt on

this systems software, but will do so no longer. No more research: it is there, use it.

The evaluation of this systems software is now well underway. There are several projects to meas-

ure the overhead of communicating and programming on ZMOB, the net result of which at the moment is

that one is better off in assembler language with the current ZMOB. The main reason is the mismatch of

the C language with the Z-80 and ZMOB architecture, which is due in part to the lack of DMA at the

current clock rate. We have also measured, using the current software, essentially linear speed-up in cer-

tain numerical analysis problems as the number of processors goes from 1 to 63. This is an encouraging, if

problem dependent, result. We certainly plan more work along these lines.

Another important systems event was the development by us of support in the Unix 4.2bsd kernel

for the Xerox XNS protocol suite. This is important for investigating parallelism over networks other

O.

than ZMOB and for comparison with ZMOB. This implementation was reported (O'Toole et al [19851)

and since then has been distributed to several other universities.

2.2.3. Investigation of general strategies for parallelism

We have several theoretical results in the area of general strategies for parallelism. In previous

years we developed a theory of program slicing which describes how to produce program subsets which

Vmodel projections of a program's behavior. These subsets could be run in parallel, and in principle con-

tained enough information to reconstruct their original program's behavior. The proof of this principle

required the theory of 'splicing', in which it was shown that for structured programs this behavior recon-

struction could be done in real-time.

We have been extending the power of theoretical analyses in several ways. First, we have re-

represented splicing in graph theoretic terms. Second, we have extended the splicing theory to general pro-

,N grams and their graphs , not just structured programs. Third, if one is interested in a projection of the

original program's behavior, say just the relative ordering of the output statements, this work presents a

technique that significant]y reduces the amount of information that has to be spliced. Finally, we have

new definitions and proofs which are much more elegant than the original language-theoretic approach. A

paper on this work has been submitted to Acta Informata. We expect it will be of interest in the field of

parallel programs as well as in the fields of graph theory and abstract automata, to which the results gen-

eralize.

A long standing problem in slices is handling program input. Earlier work requires that all input

data be sent to all slices, with the possibility that the data is simply ignored by most of them. This car-

ries the communication cost of moving that data around, and the slice run-time cost of reading it in, pos-

sibly in a loop with its associated overhead. We refer to this problem as the "splitting" problem. We now

have a technique that enables a slice to "bypass" the input of an input statement, if it cannot possibly

affect (as detectable by data flow analysis) its computation.

M

12

2.2.4. Practical Slicing and Splicing

In order to give the automatic slicing/splicing theory of parallelism a good empirical test we are con-

structing a "production quality" slicing/splicing compiler. The goals of this compiler are to automatically

parallelize large Fortran programs, to be compatible with existing low-level parallelization efforts (such as

vectorization), and to be invisible to the programmer. We achieve goal one by accepting the full f77

language as embodied in the Unix f77 compiler. We achieve the second goal by slicing and splicing com-

pletely at the source code level, thereby permitting a subsequent optimization phase to work on our sliced

code. The third goal is the research challenge, but is well on its way to being achieved for procedureless

programs. We are incorporating procedures now, and expect to have a first complete prototype of the

entire system done by fall.

3. Bibliography and References

(1) Cao, D., "Design of the Intensional Database System of the ZMOB Parallel Problem Solver", Techn-

ical Report, Computer Science Department, University of Maryland, 1982.

(2) Chakravarthy, U.S., "Semantic Query Optimization", Ph. D. Thesis, Department of Computer Sci-

ence, University of Maryland, 1985.

(3) Chakravarthy, U.S., Fishman, D., and Minker, J., "Semantic Query Optimization in Expert Systems

and Database Systems", University of Maryland, July 1984.

(4) Chakravarthy, U.S., Minker, J. and Tran, D., "Interfacing Predicate Logic Languages and Relational

Databases". Proceedings of the First International Logic Programming Conference, September 14-17,

1982, Faculte des Sciences de Luminy Marseille, France, 91-98.

(5) Eisinger, N., Kasif, S., and Minker, J., "Logic Programming: A Parallel Approach", Proceedings of

the First International Logic Progr4mming Conference, September 14-17, 1982, September 14-

17,1982, Faculte des Sciences de Luminy Marseille, France, 71-77.

(6) Eisinger, N., Kasif, S., and Minker, J., "Logic Programming: A Parallel Approach". Technical

Report TR-1124, Computer Science Department, University of Maryland, December 1981.

13

(7) Futo, I., "A Constraint Machine to Control Parallel Search on Prism", Department of Computer Sci-

ence, University of Maryland, 1984.

(8) Gal, A. and Minker, J. "A Natural Language Database Interface Giving Cooperative Answers",

Department of Computer Science, University of Maryland, 1985.

(9) Gallaire, H., Minker J. and Nicolas, J-M., "Logic and Databases: A Deductive Approach", Comput-

ing Surveys, Vol. 16, No. 2, pp. 153-185, June 1984.

(10) Gallaire, H., Minker, J. and Nicolas, J.-M., "Advances in Data Base Theory, Volume 2", Plenum

Publishing Company, February, 1984.

(11) Kasif, S. and Minker, J. "The Intelligent Channel: A Scheme for Result Sharing in Parallel Logic

Programs", Proceedings International Joint Conference on Artificial Intelligence, August 1985.

(12) Kasif, S., "Analysis of Parallelism in Logic Programs", Ph. D. Thesis, Department of Computer Sci-

ence, University of Maryland, December 1985.

(13) Kasif, S., Kohli, M., and Minker, J., PRISM: A Parallel Inference System for Problem Solving,

Proceedings of the 8th International Joint Conference on Artificial Intelligence, 8-12 August 1983,

Karlsruhe, West Germany, 544-546.

(14) Kasif, S., Kohli, M., and Minker, J., "PRISM - A Parallel Inference System Based on Logic", Techn-

ical Report TR-1243, Computer Science Department, University of Maryland, February 1983.

(15) Kasif, S., Kohli, M., and Minker, J., "PRISM: A Parallel Inference System for Problem Solving",

Proceedings Logic Programming Workshops, Praiada Falesia, Algarve, Portugal, Universidad Nova

De Lisboa, 26 June - 1 July 1983, 123-152.

(16) Kohli, M. "Controlling the Execution of Logic Programs", Proposed Ph. D. Thesis, Department of

Computer Science, University of Maryland, May 1986.

(17) Kohli, M., and Minker J., "Control of Logic Programs Using Integrity Constraints" Proceedings

Logic Programming Workshop 1983, 26 June - I July 1983, 123-152.

(18) Kohli, M., and Minker, J., "A Theory of Intelligent Forward and Backward Tracking", Technical

Report (in preparation), Computer Science Department, University of Maryland, March 1983.

14

(19) Kohli, M., and Minker, J., "Intelligent Control Using Integrity Constraints", Proceedings of the

National Conference on Artificial Intelligence, August 22-26, 1983, 202-205.

(20) Lyle, J. Evaluating Variations on Program Slicing for Debugging. Ph.D Dissertation, Computer Sci-

ence Dept., University of Maryland. December 1984.

(21) Lyle, J. and Weiser, M. Evaluating variations on program slicing for debugging. in preparation,

1985.

(22) Minker, J. Peris, D. and "Completeness Results for Circumscription", Department of Computer Sci-

ence, University of Maryland, January 1985.

(23) Minker, J. and Perlis D., "Applications of Protection of Circumscription", Proceedings of the

Conference on Automated Deduction- , Napa, California, March 1984.

(24) Minker, J., and Perlis, D., "On The Semantics of Circumscription", Technical Report 1341, Com-

puter Science Department, University of Maryland, August 1983.

(25) Minker, J., et al., "Functional Description of the ZMOB Parallel Problem Solving System", Techni-

cal Note 1, Department of Computer Science, University of Maryland, December 1982.

(26) Minker, J., et al.,"Parallel Problem Solving on ZMOB", Proceedings of Trends and Applications 83,

Washington, D.C.,1983.

(27) O'Toole, J., Torek, C., and Weiser, M. Implementing XNS protocols for 4.2bsd. Usenix Unix Users

Conference, Dallas TX. January 1985.

(28) Weiser, M., Kogge, S., McElvany, M., Pierson, R.. Post, R., and Thareja, A. Status and Perfor-

mance of the Zmob Parallel Processing System. IEEE CompCon conference, San Francisco, CA,

February 1985.

4 .,,., ,", , 'l. ...' " ";' i, ' ": ' ' ir ' : i ! '

3~s1a
f/LA? £1)

/71f

~*-.-~-. 0 ~ 0 *~'@ 0 * *-~9~--*- ~.

